
Gluon Plasma
A Plasma Variant for Non-custodial Exchanges

Bharath Rao
Leverj

bharath leverj io
WORKING DRAFT

October 23, 2018

Abstract

We introduce a plasma sidechain designed specifically for non-custodial,
high-speed, low-latency trading. We explore extending the value proposition
of plasma to a financial institution using comprehensive set of fraud-proofs
to enforce correctness and voting to handle data unavailability. We describe
a hybrid DEX that enables us to trade at high-speed, at low gas cost, and
with support for fast withdrawals without handing over funds custody to the
sidechain operator.

1 Introduction
The largest use case of cryptocurrencies is trading, which is currently dominated by
centralized exchanges. Users who trade on centralized exchanges tolerate custodial
risk for the benefits of low-latency and high-speed trading. We aim to break this
dichotomy and present a protocol that enables low-latency, high-speed trading
without custodial risks. Sidechain models such as plasma allow us to leverage the
benefits of blockchain while using only a small footprint on the main chain. We
introduce a flavor of plasma designed especially for exchanges to enable trustless
non-custodial trading.

2 Previous Work
Nakamoto’s breakthrough innovation, Bitcoin[1] made trustless transactions fea-
sible and triggered the cryptocurrency boom that is likely still in its infancy. A

1

currency whose rules are impractical to break even for state actors has triggered
thousands of projects that hope to leverage its underlying blockchain technology to
create self-compliant systems. Ethereum[2] extended the blockchain into a Turing-
complete world computer. This was formalized in Gavin Wood’s seminal yellow
paper[3]. Ethereum became the platform of choice for smart contracts that have
generalized state and logic. Plasma[4] enables a high transaction rate using a
sidechain with safe exit to the main chain. Multiple flavors of plasma exist, with
various tradeoffs between user burden, speed and convenience.

3 Trustless Finance
The appeal of cryptocurrency is its ability to self-regulate and confirm with its
internal consensus rules without the need of a centralized enforcer. This has been
variously characterized as being permissionless, decentralized or trustless.

What exactly makes something trustless? A system is trustless if all assets are
always in the custody of their owners, transfers do not need a trusted intermediary
and the integrity of all asset transfers can be verified by network participants with
certainty.

The above definition translates to the following four constraints1:

1. Segregation: Coins are created or sent directly into the owner’s custody.

2. Agency: Coin ownership can only change with the provable intention of the
owner.

3. Solvency: Only legitimately created and previously unspent coins can be
spent.

4. Integrity: Coin movement should comply with all network consensus rules2.

Segregation enforces self-custody and removes the need for trusted third parties.
Agency enables tracing a coin’s provenance to its creation. Solvency ensures that
the scarcity and value are preserved. Integrity ensures that reliable coin transfer
can be verified by observers. All four combined enable the creation of a trustless
value network.

While solvency may superficially appear to be simply another integrity con-
straint, it is different in an important aspect. Most integrity violations can be
detected immediately from an examination of the transaction bytes, leading to the
rejection of the associated transaction. Solvency (i.e., double-spend protection)

1Appendix A explores these in detail.
2Consensus rules modeled as constraints: https://en.bitcoin.it/wiki/Protocol_rules

2

https://en.bitcoin.it/wiki/Protocol_rules

is handled differently as it requires a conflicting transaction to invalidate an oth-
erwise valid transaction. Nakamoto consensus[5] eventually resolves any solvency
issues in Proof-of-work (POW) blockchains[6]. It is important to address solvency
correctly in Proof-of-Authority (POA)[7] systems to avoid catastrophic losses.

3.1 A Graph-Theoretic Model of a Trustless UTXO System

We represent addresses holding coins using nodes in a graph and movements of
coins as directed edges. In an unspent transaction output system, coins can be
merged and split in a transaction and every transaction output is a separate coin
that needs to be spent with a separate signature. An output therefore is an inbound
edge into an address.

txA0

txA1

txB0

Figure 1: The same address may hold unspent outputs from multiple transactions. The
address on the right holds two UTXOs from txA and one from txB

A new transaction can spend multiple unspent outputs from different transac-
tions and distribute them to multiple recipients[8]. A transaction can be validated
by checking that outputs are sent directly to the recipient (Segregation), all spent
inputs are signed (Agency), only valid unspent balances are spent (Solvency) and
the transaction complies with all consensus rules (Integrity). Once these rules are
validated for each UTXO, they can all be marked as verified edges.

In UTXO networks, coins are created into the control of the owner. For ex-
ample, the bitcoin network’s coinbase transaction creates block reward coins going
from Origin3 into the owner’s address.

An UTXO model’s safety can be modeled as a valid path in a directed graph.
An UTXO is valid if and only if there is a verified path to it from origin:

1. An unbroken chain of signatures (agency)

2. to the origin transaction (segregation)

3. of valid consensus confirming transfers (integrity and solvency)
3Bitcoin uses the UTXO with transaction Id 0, Output index -1 to denote the Origin[9].

3

Origin

Figure 2: UTXOs as validated paths flowing from origin transaction to addresses

Verification is onerous in a large graph. Since coins are split in most transac-
tions, it’s not sufficient to do a breadth-first search. Rather, all inputs of every
transaction that participates in the path should be verified as valid. This rapidly
becomes a large set with every new transfer, similar to a human’s list of ancestors.
The number of potential paths is very large, so blockchains amortize validation by
downloading every transaction and verifying them as they are added. This allows
us to assume that every reference to an already verified transaction is a valid path
and only verify the most recently added UTXOs.

4 Exchange Security Models

4.1 Centralized Exchanges

Custody and ownership are intertwined and transferred together in an UTXO coin,
but centralized exchanges split the two concerns. A user gives up custody to the
exchange when he deposits coins into his deposit address but retains ownership.

This situation gives rise to the chances of someone else losing your coins through
malice or general incompetence. Exchanges try to limit this risk by splitting their
holdings into a majority cold wallet[10] and minority hot wallet holdings. The
cold wallet custody is vested among a small set of trusted officers to reduce risk
of theft.

Centralized exchanges have no security properties since none of the four con-
straints are enforced. Segregation does not exist, since depositing involves essen-
tially giving up custody to the operator; and anyone can deposit coins into any
account or withdraw to any address enabling phishing attacks.

Without self-custody, there is no agency. However, an exchange may simu-
late agency via associated side channels such as email confirmations or two-factor
authentication (2FA). Ultimately, all side channel verifications boil down to an
identity check plus association of the identity with the account. This interface
is not seamless and provides for a variety of attacks. Intertwined identity and
agency using crypto addresses and signatures are stronger than any mobile 2FA
side channel association and authentication[11].

4

A1

A2

D1

D2

?

Figure 3: Centralized exchange showing no constraints on funds movement among user
addresses Ai and deposit addresses Di, rendering security proofs infeasible.

There is no simple way to prove solvency of user funds continuously. Even with
periodic proof-of-reserves, there is no way for the exchange to prove that it’s not
running a fractional reserve since there is no solvency constraints for withdrawals
or other transactions. Consequently, theft is often not detected for quite some
time and often operators may lose user funds in risky ventures without anyone’s
knowledge.

The absence of publicly verifiable integrity checks eliminates any practical way
to prove the invalidity of balance changes caused by maleficent operators or random
bugs in the exchange code. This situation enables exchanges to engage in or turn
a blind eye to all manner of manipulation; for example, giving friends the ability
to place large orders without funds backing such orders.

In summary, all major exchange problems are a result of their inability to
enforce the four trustless constraints. We believe this is true for all other financial
systems that may be built on smart contract capable blockchains.

4.2 On-chain Exchanges (DEX)

On-chain exchanges can enforce the above constraints quite easily since interacting
with the network and posting a blockchain transaction do most of the heavy lifting.
The early decentralized exchanges models are fully on-chain, i.e., they use a smart
contract to hold order books or reserves of tokens that users can interact with to
perform trades. Naturally, the per transaction costs of such exchanges are very
high and latency is limited by blockchain speeds, usually at intolerable levels. Such
exchanges are also susceptible to a variety of front-running and DOS attacks[12].

5

A1

A2

A1

A2

MAIN CHAIN SMART CONTRACT

Figure 4: On-chain exchanges provide safety by syncing every transaction to the
blockchain but are constrained on scale and latency.

4.3 Hybrid Exchanges

A hybrid exchange uses a smart contract to hold user funds and enables trustless
trades between participants facilitated by a centralized entity. Although this can
be a lot faster since orders don’t need to go into the contract until filled, proving
safety is a bit more involved[12].

Since the smart contract can identify the source address and the network has
already verified the user signature, its trivial to credit deposited funds directly
into the custody of the sender, making enforcement of the segregation constraint
straight forward — the operators of the exchange never take custody of funds.

This scheme also facilitates solvency checks ensuring that the exchange is never
at fractional reserve. The integrity checks are a bit more involved and require prov-
ing orders and fills are unique, have not been replayed and there are no race condi-
tions between fills and cancels. This is accomplished by storing filled and cancelled
orders or execution in the contract resulting in high costs and low speeds[13]. In
addition, price-time priority proofs need to be added to verify that the exchange
is not skimming the users.

6

5 Plasma and Plasma Exchanges
One way to dramatically reduce on-chain cost and improve latencies is to use a
specialized sidechain to execute trades and perform settlements. This would reduce
the main-chain footprint to deposits, withdrawals and occasional commitment of
state integrity to the main chain. Plasma as a sidechain on Ethereum is the most
advanced option as of this writing.

5.1 Plasma Classic Outline

The original idea of plasma (Plasma Classic) has blossomed into multiple flavors
to suit the needs of various projects, but the central idea is essentially the same4:
The sidechain is valid as long as all changes on it are verifiable. There is a way
to safely exit when the sidechain is no longer verifiable.

1. A plasma sidechain P is anchored to root chain R

2. A deposit in R creates UTXO in P

3. A withdrawal from R removes UTXO from P

4. State changes in P are periodically committed into R as block headers.

5. Block headers contain sufficient information to prove correctness of state
transitions

6. Incorrect state transitions in P are rolled back (up to a point) using fraud-
proofs on R

7. Exits are prioritized by earlier P blocks, to ensure fraudulent outputs fail

8. If information needed for fraud-proofs is withheld, mass exit from P to R

5.2 Plasma Exchange

The plasma exchange can scale up to the speed of centralized exchanges by avoid-
ing the need to sync trades and orders onto the on-chain smart contract. The
main-chain plasma contract that holds custody of user funds at any time has no
knowledge of the exact balance of any user. It’s the responsibility of the user to
provide proof-of-solvency for withdrawals. In interactive plasma variants, the user
may have to post a bond that would be forfeited in case of a successful challenge
by another network participant.

4Originally posted at: https://ethresear.ch/t/plasma-classic-compact-spec/1711

7

https://ethresear.ch/t/plasma-classic-compact-spec/1711

A1

A2

A1

A2

X

MAIN CHAIN PLASMA CHAIN

Figure 5: Plasma exchanges use smart contracts to enforce integrity without syncing
trades to the main chain, combining centralized performance and decentralized safety.

The proof of safety of the plasma exchange rests on the proof that the exchange
can enforce Segregation, Agency, Solvency and Integrity in all of its operations in
a manner verifiable by all participants.

5.3 UTXO Based Plasma Issues for Exchanges

1. Witness Baggage. Agency (ownership) is proved by signatures going back
to the main-chain deposit transaction. This list can get very large in an
exchange with high volume.

2. Onerous Ownership. User is required to regularly check transactions on
plasma sidechain for fungible coins or main chain for non-fungible coins.

3. Stampede to Exit. The huge number of UTXOs that need to exit on data
unavailability suggest that the actual mechanics of exiting cannot be reliably
modeled due to unpredictable congestion and fees. There is a good chance
that if disaster strikes, orderly exit may be impractical.

4. UTXO Shredding. This is the tendency of an UTXO based system to frag-
ment all outputs to the smallest possible size. This is a serious scalability
limitation for exchanges. This is a natural outcome of price-time priority

8

matching. Orders are matched by best price, followed by best time of order
placement. Order matches will generate a partial match for the larger sized
order and a full match for the smaller size order. The exchanged assets will
be received in smaller outputs with every future match and this process will
repeat over time resulting in each user holding a large number of smaller
and smaller outputs. This amplifies the load on the sidechain even more
dramatically.

We believe UTXO model sidechains scale poorly for exchanges and therefore
have constructed an account model sidechain.

6 Gluon Plasma
We introduce a variant of plasma that is designed for high speed trading engines
and avoids the issues of UTXO based plasma. Our plasma sidechain is designed
with the following goals in mind:

1. Account based

2. Small footprint

3. Instant finality

4. Fast withdrawals

5. Compact fraud-proofs for every transition

6. Non-Onerous safety

7. Congestion tolerant

8. Incentive balanced

9. Chain halt on data unavailability

The custody of users’ assets on the plasma sidechain is managed by the Gluon
plasma contract. The plasma contract serves as the interface for assets between
the main chain and the plasma sidechain.

The plasma contract also accepts fraud proofs and enforces correctness. Any
proof of operator compromise may be submitted to the plasma contract which re-
sults in an immediate halt of the sidechain enabling withdrawal of funds at leisure.
The plasma contract also enforces a chain halt to address data unavailability.

All other features not relating to custodial issues are not a concern for the
plasma contract, enabling products that use the plasma sidechain to add features
without the need to redeploy a new contract.

9

6.1 Gluon Plasma Outline

1. Gluon plasma starts with a known zero state where all balances are zero.

2. Deposits to the main chain of an asset by user increase the user’s asset
balance on the plasma sidechain by a corresponding amount.

3. Withdrawing funds from the plasma sidechain decrease the balance on the
sidechain and enables withdrawal on the main chain.

4. Transfer of assets (trading) between users on the plasma sidechain require
matching signed orders of the users, countersigned by the operator.

5. All state changes require accompanying witnesses. Any invalid witness can
be used to halt the plasma sidechain and let users withdraw at leisure.

6. In the event of data unavailability, participants can vote to halt the sidechain,
enabling users to withdraw on the main chain at leisure.

6.2 The Gluon Plasma Ledger

All state changes in the plasma sidechain are recorded in a ledger that enables
verification of the provenance and validity of every single balance.

1. The plasma sidechain state is maintained on its own ledger. The plasma
sidechain starts with a known zero state, where all balances are zero. This
is reflected by a special ledger entry called the Origin.

2. Every state change creates a new ledger entry retaining a link to the prior
entry that it invalidates.

3. Every new ledger entry enforces trustless constraints of Segregation, Agency,
Solvency and Integrity, whose validity can be independently verified by net-
work participants.

4. Every ledger entry is signed by the operator. This reflects the fact that the
operator is signing off on the changes.

5. The plasma contract will accept invalid entries signed by the operator as a
fraud proof.

6. Deposits in the main chain create a new ledger entry that reflects the user’s
increased asset balance.

10

7. Ledger Entries are periodically committed to the main chain via Merkle
roots. Each set of such transactions is called a Gluon Block or G-block. No
transactions can be skipped or reordered.

8. All acceptable deposits occurring in a G-block are committed as an ordered
Merkle root.

9. All current balances of each Account/Asset pair are committed as a Merkle
root.

10. The plasma contract enforces a minimum number of main chain blocks be-
tween each G-Block to ensure sufficient latency for a vote to halt.

11. The last committed G-block is said to be unconfirmed and cannot be used to
initiate a withdrawal. It is open to challenges from validators. Once a newer
G-Block is committed, the prior G-Block is deemed confirmed and may be
used to withdraw funds.

12. Withdrawing some of the balance on the plasma sidechain reduces the asset
balance on the sidechain and enables withdrawal from the main chain. This
creates a corresponding ledger entry to reflect the reduced asset balance.

6.3 Ledger Entries

Each state change is recorded in a ledger entry that includes the following:

Table 1: Ledger Entry fields in Gluon Plasma

Field Meaning
Entry ID ID for the new state
Prior Entry Prior state
Type Origin, Deposit, Trade, Fee, Withdraw, Exited
Account Ethereum public address of owner
Asset Token Address. All zeros for Ethereum
Quantity Net Change from prior balance
Balance New balance
Witness Acceptable Proof of validity

6.4 Ledger Entry types

There are six ledger entry types: Origin, Deposit, Withdraw, Exited, Trade and
Fee. The initial state, also known as Origin, is a special entry that records a
universal zero balance.

11

The Deposit and Withdraw entries are on and off ramps into the plasma
contract. They increase and decrease the balance respectively. The Exited entry
type represents a permanent cessation of all activity for an (Account, Asset) pair
and reduces balance to zero. Trade represents a trade of an asset pair between
two accounts. Fee represents fees paid to the operator.

6.5 State Transitions

Table 2: Ledger Entry fields in Gluon Plasma. Account data are signed by the account
private key and entries by operator key. The symbol ∗ indicates "any."

State Prior Type Account Asset Qty. Bal. Witness
0 0 Origin ∗ ∗ 0.00 0.00
1 0 Deposit A1 Z1 +0.10 0.10 Deposit Hash
2 1 Trade A1 Z1 −0.05 0.05 Orders, Fill
3 0 Trade A1 Z2 +0.02 0.02 Orders, Fill
4 3 Withdraw A1 Z2 −0.01 0.01 Prior balance
5 4 Exited A1 Z2 −0.01 0.00 Exit Block

Every state transition has sufficient witness data to prove correctness of the
new entry and a link to the prior entry. A partial set of entries for an account
A1 that deposits asset Z1 and trades 0.05 of it for 0.02 of Asset Z2 and finally
withdrawing and exiting is shown in Table 2.

Note that state2 obsoletes state1 for the tuple (A1, Z1) but state3 is a new state
for (A1, Z2), therefore its prior entry points to Origin.

Fig. 6 illustrates the coin flow when an Account A1 deposits Z1, an Account
A2 deposits Z2 and they trade portions of the assets with each other.

The set of state changes has the signature of all parties plus the signature of
the operator and is replicated among the network. The new states obsolete the
old states, i.e., the balance at state2 : (A1, Z2) is spent/obsoleted by an updated
balance at state6 : (A1, Z2). Further trades among the same assets update the
existing balances to new states: if A2 sells some more Z2, state6 will be updated
to state10. Additional non-obsoleted balance entries are created only when an
account acquire an asset it did not previously own.

The validity of a balance entry can be verified by tracing the integrity and
witness data all the way back to the origin just like an UTXO system. Such
tracing is expensive and impractical for any high-volume system. We take the
same approach as blockchain based coins and amortize the cost by validating
changes in real-time.

12

0Origin

1

2

3

4

5

6

7

8

9

10

A1Z1

A2Z2

A1Z1

A1Z2

A1Z1

A1Z2

A2Z1

A2Z2

A2Z1

A2Z2

Figure 6: Plasma assets flows are a simpler version of the classic UTXO model.

6.6 Gluon Blocks

State transitions are organized into blocks that are committed to the plasma con-
tract called Gluon Blocks or G-Blocks at regular intervals called submissionInter-
val. The commitment contains the following:

Table 3: Block Header committed to the main chain on the Gluon Plasma Smart Contract.

Field Name Description
gBlockNumber G-Block number, increasing positive integer
depositRoot Ordered Merkle root of all valid deposits in this G-block
withdrawRoot Merkle root of all withdraw entries in this G-block
balanceRoot Merkle root of current balances snapshot as of this G-block

As users trade on the plasma sidechain, their balances change, and ledger
entries are created to reflect every new balance. These balances are not yet in
any G-Block and are considered to be in the Mempool. These transactions are
immediately eligible for fraud-proofs if the operator has shown fraudulent behavior.

The operator accumulates entries from the Mempool and periodically commits
the most recent transactions to the plasma contract as a new G-block. The most
recent G-block committed is said to be unconfirmed and not usable for withdrawal,
since the operator may have generated it by including invalid entries. A minimum
challenge period needs to elapse to give participants a chance to verify the new
G-block or submit a vote to halt the sidechain in case of data unavailability. Once
the period has elapsed and a new unconfirmed G-block has been committed, the

13

prior G-block is deemed confirmed and can be used for withdrawals. A user may
also withdraw funds by showing proof of the exit claim by providing the Merkle
proof of its entry in a confirmed G-block.

The root hashes above are also computed by network participants in real-time
as new ledger entries are published. If the root hashes do not match the values
committed to the plasma contract, there is a potential data unavailability issue
and the participant can vote to halt. Naturally, participants should sync and
obtain any missing entries if they have suffered from recent downtime or network
disruption to avoid false signals.

Table 4: Ledger entries from Mempool are committed to G-blocks periodically. The last
G-block committed (G-block 3) is unconfirmed and unavailable for withdrawal.

G-Block 1 (confirmed)
TX1 to TX 130

G-Block 2 (confirmed)
TX131 to TX 526

G-Block 3 (unconfirmed)
TX 527 to TX 785

Mempool
TX 786 onwards

If proof of operator compromise is submitted to the plasma contract, then all
transactions in the unconfirmed G-block and Mempool are effectively rolled back.
This prevents a maleficent operator from withdrawing funds using fake balances.

7 Characteristics of Gluon Plasma

7.1 Account Based

Account based plasma can be seen as a structural constraint of having only one
UTXO per asset per account called the balance.

When a recipient receives funds, the balance of that asset type is also spent,
resulting in a new unspent balance output whose value is the sum of the spent
balance and received funds.

This concept collapses the multi-branch UTXO graph into a single chain and
allows us to reason about account safety in far simpler terms and create a com-
prehensive set of simple and compact fraud proofs.

The external address that deposits the funds can be used as an account iden-
tifier enabling seamless enforcement of Segregation and Agency constraints.

This approach also simplifies fraud proofs and orchestration of transactions:

14

1. No UTXO Shredding. Even with millions of matches, the user only has one
balance per asset instead of the millions that would need to be managed in
a pure UTXO system.

2. Predictable Sidechain Characteristics. For example, we can compute bounds
for exiting to the main chain in case of a compromise, which is simply the
product of the number of users and assets.

3. Compact Transactions. Instead of picking the best set of UTXOs to fit the
size of the trade and assemble them into acceptable transaction sizes, we
simply have fixed size transactions.

4. Compact Proof-of-Ownership. We do not require a chain of signatures from
the creation of the UTXO into the plasma sidechain or periodic consolida-
tions in the main chain to manage UTXO bloat. The latest balance is the
single source of truth.

5. Compact Fixed-Size Fraud-Proofs. A later balance invalidates all prior bal-
ances. This enables compact, fixed-size fraud proofs that can be submitted
to the plasma contract at predictable gas costs.

7.2 Small Footprint

One of the important distinctions of Gluon plasma versus other DEX is the small
footprint in terms of state required on both the main chain and the plasma
sidechain. The main chain footprint is limited to deposits, withdrawals and peri-
odic commitments of the plasma sidechain. The commitments are a constant cost
and do not change with trade volume or user activity. Deposits and withdrawals
costs are similar to centralized exchanges. On the plasma sidechain, since every
new balance invalidates the prior balance, validating nodes do not need to hold
the the full sidechain history.

7.3 Instant Finality

In coins with probabilistic finality (most POW and POS based coins) an observed
transaction needs to be buried under work and/or time before it can be acted
upon by an observer. For payment systems, a few seconds or even minutes may
be acceptable for in-person transactions; much longer delays maybe acceptable
for online transactions. In a trading application, finality must be instant, i.e., an
observed transaction must be accepted and actionable. This is because a filled
transaction needs to trigger other actions, which when delayed can lead to losses.
An example is setting stop orders when an entry order is filled or cancelling stop

15

orders when a profit is taken. Having to wait even for a few seconds could mean
the stop order cannot be set due to market movement.

Instant finality is accomplished by having the operator sign each execution with
the exchange operator’s private key. This key should not have access to any funds.

Instant finality also eliminates the “free option.” In systems where the two
matched parties have to transmit the transaction to each other for mutual signa-
tures, the trader who signs it last has a free option, where he can choose to sign
only if the trade has moved in his favor.

Having the operator match and countersign user-signed orders also eliminates
the need to be online during a match. Participants can treat the exchange as
a central counterparty and the fills are non-interactive once orders are placed.
Natural trading behavior such as placing an order and closing the laptop computer
is fully supported. Complex order types such as OTO/OCO orders[14] are greatly
simplified by making the order execution non-interactive.

While transfers within the sidechain have instant finality, transfers between
main chain and sidechain have between 2 to 5 G-blocks to finality.

7.4 Fast Withdrawal

Having a POA system also enables fast withdrawals in the substantial portion of
the time when the operator is behaving normally. Any faulty withdrawal can be
immediately detected by any observer who can submit a fraud proof to the plasma
contract.

7.5 Compact Fraud-Proofs for Every Transition

While POA is the direct route to instant finality, the authority of the exchange
needs to be strictly limited to the authorized intentions of market participants
according to the publicly agreed upon rules of the system. The exchange should
not permit users to trade amounts in excess of their balance or create fake balances
out of nothing. If a user authorizes buying 1,000 tokens for 1 ether by signing the
order with their private key, then the operator should only be able to fill the order
within those parameters.

Detection of any of these violations are simple, without undue burden of storage
or computation on the part of the observer. We accomplish this by verifying
the enforcement of all four trustless constraints for every state transition. On
detecting any violations, the last valid state and the succeeding invalid state may
be submitted to the plasma contract as a fraud-proof. The plasma contract halts
the sidechain and enables all users to withdraw funds at leisure on submission of
valid fraud-proofs.

16

Any aspect of the blockchain that can grow boundlessly with no or low cost
will result in spam attacks and make verification onerous, causing only well-funded
players to participate in the network. This includes proofs and therefore, proofs
should be of constant size and easily computable. Fraud-proofs are of constant size
when all information regarding correctness can be deduced from the combination
of the prior state, change requests and the new state.

All validator proofs are non-interactive which makes operating a validator sim-
ple and cheap.

7.6 Non-onerous Safety

The cost of ensuring safety of the network should be cheap in terms of both effort
and resources. Some plasma variants require users to check the plasma sidechain
every week or so to ensure their funds are not stolen. This implies that withdrawals
to main chain would take about two weeks. In contrast, Bitcoin and other classic
cryptocurrencies require no verification of the blockchain to ensure your funds are
not stolen. Onerous safety is equivalent to cheap attacks and vice-versa. Safety
should rest on a very few actors acting honestly. In Gluon plasma, only one
validator needs to be honest and present to prevent a compromised operator from
stealing funds.

7.7 Congestion Tolerant

The protocol measures intervals in Gluon blocks where possible. This mitigates the
effects of congestion on the main chain, enabling the plasma sidechain to continue
operation mostly unaffected. Short downtimes can be accommodated without risk
of protocol failure.

7.8 Incentive Balanced

Incentive-balanced protocols where malicious actors have to expend resources and
effort and normal users do not have to, are robust. The larger the incentive to
cheat, the more expensive an action needs to be. In Gluon plasma, simple holding
an asset is free.

7.9 Chain Halt on Data Unavailability

The plasma sidechain can also be halted in case of data unavailability. Block
withholding is an attack by the operator where blocks are created but some or
all ledger entries are not broadcast. Block withholding can be detected but not

17

proven since there is insufficient data available for fraud proof submission. Block
withholding attacks are handled by users exiting their funds from the main chain.

Voting. This is accomplished by a threshold voting to halt the sidechain.
To enable everyone to vote in a reasonable amount of time, the sidechain will be
slowed based on the stake size that has chosen to vote. Since account sizes follow
a power-law distribution and since the biggest accounts are likely to monitor the
plasma sidechain, the very first or second large stake will push the next block by
a few days giving others time to vote their stake. It takes just a few of the largest
stakeholders to bring the sidechain to a halt.

Abandonment. If the operator stops creating blocks for a very long time, the
chain is said to be abandoned, and a public method can be invoked on the plasma
contract to halt the chain, allowing everyone to transfer funds to the main chain.

8 The Gluon Plasma Protocol
The Gluon plasma protocol only cares about custody. It has the following elements:

1. Deposit

2. Reclaim Deposit

3. Withdrawal

4. Exit Asset Balance

5. Gluon Block Submission

6. Vote to Halt

7. Halt Abandoned Chain

8. Fraud Proofs

All protocol steps have state transitions that the operator needs to incorporate
into the ledger by creating a new entry. These ledger entries contain witness data
and are signed by the Operator. These can be checked by any Validator and a
non-interactive fraud proof may be submitted to the plasma contract if the witness
data is invalid.

Users are normally only concerned with Deposit and Withdrawal steps. They
will Reclaim Deposit and Exit Asset Balance on halted chains.

18

8.1 Deposit

1. Account A transfers quantity N of asset Z to plasma contract C.

2. C computes the designated G-block G in which this deposit would be
committeda on the plasma sidechain.

3. C computes and stores hash H of (A,Z,N,G, nonce).

4. Operator X creates a ledger entry D referencing H and crediting N
amount of Z to A. A can trade once D is published.

5. Operator X commits an ordered Merkle root depositRoot of all deposits
for G-block G. Any ignored deposits need to be reclaimed by the user.

aThe deposit visibility is on a future G-block G = Gi+k; k ≥ 3 is necessary to ensure
sufficient main chain confirmations before the deposit is visible on the plasma sidechain.

Remarks. The operator creates Deposit ledger entries for every deposit that
it deems valid, signs them and publishes them on the plasma sidechain. These
entries are committed to the main chain as depositRoot.

8.2 Reclaim Deposit

Account A can reclaim an operator uncommitted deposit once G is confirmed.

1. A submits (A,Z,N,G, nonce) with exclusion proof (H /∈ depositRoot).

2. C computes hash H of (A,Z,N,G, nonce) and verifies that H has not
already been reclaimed and has been excluded from depositRoot of G.

3. C marks H as reclaimed and transfers quantity N of asset Z to account
A.

Remarks. While any account can transfer any asset to the plasma contract,
the operator will only add entries to the ledger for supported assets. Any unsup-
ported assets will be ignored by the operator and the user should Reclaim Deposit
to retrieve them. An unacknowledged deposit is normal and not a griefing attack.

Ignoring unsupported tokens also eliminates some spam attacks. In addition,
the operator may choose to ignore tiny deposits.

The ability to reclaim an unacknowledged deposit directly from the smart con-
tract without requiring the co-operation of the operator is an essential requirement
for non-custodial operation.

19

8.3 Withdrawal

1. Account A submits a signed withdrawal request for quantity N of asset
Z to operator X off-chain.

2. Operator X creates a Withdraw ledger entry W that reflects the new
reduced balance of (A,Z) and publishes it. A can withdraw once W is
in a confirmed G-block.

3. A submits W with inclusion proof (W ∈ withdrawRoot) to plasma con-
tract C.

4. C verifies W is valid and has not been already processed. C stores hash
of W to prevent duplicate withdrawals and sends N quantity of Z to A
on main chain.

5. If W is not published within a reasonable time (griefing attack by X), A
should cancel all open orders for Z and proceed to Exit Asset Balance.

Remarks. In normal operation, the user can withdraw very fast with the
co-operation of the operator. From the user’s perspective, a withdraw request is
submitted and approved after a short period of time following which, the user can
withdraw the funds.

8.4 Exit Asset Balance

1. Account A submits ledger entry E for Asset Z with inclusion proof (E ∈
balanceRoot) of the last confirmed G-block to plasma contract C.

2. C registers the exit claim for E in G-block Gi.

3. Operator X cancels all open ordersa and prevents further activity for
(A,Z).

4. After k G-blocksb, A submits proof of unchanged balance in the uncon-
firmed G-block Gi+k. (e ∈ G.balanceRoot; e ∈ Gi+k.balanceRoot).

5. C transfers balance of Z to A on main chain and marks (A,Z) as Exited
by storing ExitBlock(A,Z) = Gi+k thus preventing all further activity
for (A,Z).

aOperator detects claims by monitoring events on the plasma contract.
bk ≥ 3 is an implementation-specific parameter ensuring all transactions currently in the

Mempool at the point of the initial exit claim are in a G-block.

20

Remarks. Exiting an account’s asset balance is a permanent cessation of
activity for the account/asset pair. Normally, this is only needed when the operator
refuses to honor a fast withdrawal. Assets may be transferred on a halted chain
using only the final step.

8.5 Gluon Block Submission

1. Operator X sends new G-Block Gi+1 to plasma contract C.

2. C stores Gi+1:

(a) Ensure Gi+1 is valid (expected G-block number).

(b) Ensure block.number ≥ submissionBlock.

(c) Store Gi+1.

(d) Mark Gi as confirmed and Gi+1 as unconfirmed.

(e) Update submissionBlock = block.number + submissionInterval

(f) Update voteTally = 0

Remarks. The operator must include all ledger entries since the last G-block
without any omissions or reordering. The plasma contract enforces a minimum of
submissionInterval main chain blocks between two G-blocks.

8.6 Vote to Halt

1. Account A votes to halt chain by invoking halt() on staking contract S.

2. S computes voteSize and submits to C.

(a) Let voteSize = Tokensa staked by A

(b) Reduce A’s stake balance by votingCost = voteSize× votePrice

(c) S submits votingCost to C.

3. C tallies votes and halts the plasma sidechain if threshold is met:

(a) Update voteTally += voteSize

(b) Update submissionBlock = delayFunc(voteTally)

(c) Halt Chain if voteTally > haltThreshold

aLeverj uses LEV tokens for staking and governance.

21

Remarks. Ledger entries and G-block commitments can be used as fraud-
proofs to ensure chain fidelity. If the operator withholds some or all entries from
the committed block to prevent a fraud-proof submission, stake holders should
vote to halt the chain.

A polynomial function delayFunc ensures that when even a small size of the
stake votes to halt, the next G-Block is delayed significantly, giving observers and
large stakeholders sufficient opportunity to vote to cross the halting threshold.

Votes are tallied in voteTally. The expected outcome is big stake holders such
as market makers vote with minimal delay and reach the threshold quickly and
halt the plasma sidechain.

The parameter haltThreshold (10% of total supply) should be large enough
that a random account shouldn’t be able to halt at will and disrupt the smooth
functioning of the plasma sidechain but small enough that halting is highly likely
if the largest four or five non-team stakeholders vote.

The parameter votePrice (around 10%) determines the amount the halt invoker
is willing to sacrifice to halt the sidechain. This should be low enough to be
an acceptable alternative to a compromised operator but high enough to deter
frivolous halts.

A speedy halt enables orderly exit and appropriate action to be taken, including
deploying a new contract (in case of a bug) or a total new deployment (in case
of a security breach). The ideal values for these parameters are best determined
empirically with halting games with test users.

All voting schemes are tradeoffs and will never be perfect. Moving beyond
voting into provable correctness that can be verified by the plasma contract itself
is a research subject we are actively pursuing.

8.7 Halt Abandoned Chain

1. Account A calls abandon on plasma contract C

2. C halts chain if block.number > submissionBlock + abandonPoint

Remarks. The Gluon plasma system transitions among states on actions by
the operator, validators or stakers voting to halt. This protocol step ensures that
if all other actors abandons the chain, a lone user can still transfer funds back to
the main chain.

8.8 Fraud Proofs

The Gluon plasma smart contract is not aware of trades and real-time balances of
any accounts but it does know about fraud proofs and how to enforce them.

22

The operator facilitates trades between buyers and sellers who submit their
signed orders. The signature from their private key is essential to prove that the
trade is duly authorized and trade execution is within the parameters authorized
by the participants.

A trade execution contains the fill parameters and include both buy and sell
orders along with the operator’s countersignature. The operator signature prevents
users from creating fills on their own and fabricating balances.

The signatures and rules of the system are encoded as fraud proofs into the
Gluon contract and security is predicated on having at least one honest validator
able and willing to submit fraud proofs to the contract.

8.9 General Protocol Characteristics

8.9.1 Spam Attacks

Flooding the plasma sidechain with Deposit and Exit requests is an unlikely at-
tack vector, since the gas cost alone should be a discouragement for this attack.
The net impact of a spam attack is reduced on-chain bandwidth for deposits and
withdrawals.

Voting to halt costs a significant amount of governance tokens and should
discourage careless voting or deliberate griefing.

8.9.2 Network Congestion/Server Temporarily Offline

If the operator is offline for a short duration of time (for maintenance or net-
work/data center outage), balance updates, deposits and withdrawals can continue
on the main chain but the corresponding ledger entries will be postponed until the
operator comes back online.

8.9.3 Contract Upgrade

The operator halts all activity and submits a G-Block containing the final trans-
actions. After the mandatory block submission delay, an empty G-block is also
committed, thereby confirming the prior G-block. It then moves the plasma con-
tract to a halted state. Users can use the Asset Balance Exit protocol to extract
and move funds to the upgraded contract.

8.9.4 Halted State

The operator determines the cause of the halt and takes any necessary corrective
action and starts a new sidechain. The old chain is abandoned and users move
their funds to the new chain.

23

9 Gluon Plasma Fraud Proofs
We present a comprehensive suite of fraud proofs that address every possible state
change. Fraud proofs are stated as assertions that need to be always true. Any
failed assertion should halt the plasma sidechain.

All fraud-proofs that require any operator signed ledger entry e require verifi-
cation of the operator signature to ensure authenticity.

ecrecover(e) = operator (1)

9.1 Gluon Protocol Frauds

9.1.1 Block Commitment Frauds.

Data unavailability is detected as a mismatch between the observed ledger entries
and their commitment. Validators compute commitment roots as they are pub-
lished and if their commitment does not match the expected value, proceed to
Vote to Halt. This also works as a catch-all fraud proof in case a new fraud that
can be detected but not proven is found after the plasma contract is live.

Deposit Commitment Mismatch. Operator commits deposit in depositRoot
but does not create a corresponding Deposit ledger entry.

Detection. Committed depositRoot does not match deposit commitment MD

computed by plasma participants using published Gluon plasma Deposit ledger
entries for a given G-block, resulting in Vote to Halt.

MD = G.depositRoot (2)

Withdraw Commitment Mismatch. Operator commits a withdrawal in
withdrawRoot but does not create a corresponding Withdraw ledger entry.

Detection. Committed withdrawRoot does not match withdraw commitment
MW computed by plasma participants using published Gluon plasma Withdraw
ledger entries for a given G-block, resulting in Vote to Halt.

MW = G.withdrawRoot (3)

Balances Commitment Mismatch. Operator creates a fake ledger entry in
order to steal funds and commits in balanceRoot but does not publish it to avoid
detection.

Detection. Committed balanceRoot does not match commitment MB com-
puted for current snapshot as of a given G-block by plasma participants using all
published Gluon plasma ledger entries, resulting in Vote to Halt.

MB = G.balanceRoot (4)

24

9.1.2 Invalid Deposit Fraud

Operator creates a deposit entry with a fake, incorrect or already reclaimed deposit
hash H (i.e., credits an incorrect account, amount or asset)

Proof. Operator signed Deposit ledger entry e. The plasma contract C cross-
checks the entry hash as its own creation. An invalid deposit entry causes a chain
halt.

H = hash(e.account, e.asset, e.quantity, e.gBlock, e.nonce)

C.deposits[H] = true (5)

9.1.3 Deposit Reversal Fraud

Operator does not include the deposit ledger entry e in depositRoot enabling user
to reclaim the deposit and trade without funds.

Proof. The deposit ledger entry e. Proof of exclusion of the deposit hash H
of e can be used as proof. As a practical matter, since the committed depositRoot
won’t match the validator computed value, this will result in a Vote to Halt.

e.H ∈ G.depositRoot (6)

9.1.4 Fake Withdraw Entry

Operator creates an unauthorized or fake Withdraw entry. The operator cannot
steal these funds but can grief a user and prevent them from trading.

Proof. Operator signed fake Withdraw entry e. The plasma contract checks
that the user signature does not match contents and chain is halted.

ecrecover(e.accountsignature) = account (7)

9.1.5 Exit Insolvency Fraud

Exchange does not cancel Exited orders, enabling trading without funds.
Proof. Insolvent ledger entry e and Merkle proof in a post exit G-block.

Existence of any ledger entry e after Exited balance is evidence of a compromised
operator. To prevent loss, this proof must be submitted when the entry is still in
an unconfirmed G-block Gi+1.

∃ExitBlock(A,Z) = Gx ∧ e ∈ Gi.balanceRoot =⇒ i < x (8)

25

9.1.6 Fake Exit Fraud

Operator creates a fake Exited entry to grief the user.
Proof. Operator signed Exited entry e. An exit (A,Z) is saved in the plasma

contract and can be easily checked.

e.type = Exited =⇒ ∃ExitBlock(A,Z) (9)

9.2 Ledger Entry Frauds

9.2.1 Fake Signature Fraud

A maleficent operator can perform a skimming attack by creating fake orders of
victim accounts. The operator may sign an account order with a fake API key[15].
These orders may be used to pump prices or other forms of market manipulation.

Proof Any ledger entry e. An API key originator for any account is verifiable
by the plasma contract from API Key registry R. The fake order in the ledger
entry would not have a valid signature of the account. To ensure that ledger entries
are not created by a validator to fraudulently halt the chain, we have to also ensure
that the ledger entry has been signed by the Operator.

ecrecover(e.buyorder) = e.buyorder.account (10)

ecrecover(e.sellorder) = e.sellorder.account (11)

R.translate(e.buyorder.originator) = e.buyorder.account (12)

R.translate(e.sellorder.originator) = e.sellorder.account (13)

9.2.2 FEE Fraud

The operator may give an excess fee to itself say, 100% and steal everyone’s funds.
The operator may also extract fees from an unauthorized asset or send the fee to
an unauthorized recipient.

Proof. Any ledger entry e. The maximum fees (MAX_FEE) that can be
charged is enforced by the contract.

e.type = FEE =⇒ e.fill.quantity ×MAX_FEE ≤ e.quantity (14)

e.type = FEE =⇒ e.account = STAKING_ADDR (15)

e.type = FEE =⇒ e.asset ∈ FEE_TOKENS (16)

26

9.2.3 Price Fraud

The operator may match victim orders at unfavorable prices and give its own
orders a better price, enabling skimming.

Proof. Any ledger entry e that matched a limit order. Executions should fill
at limit price or better .

e.fill.price ≤ e.buyorder.price (17)
e.fill.price ≥ e.sellorder.price (18)

9.3 Ledger Entry Ordering Frauds

9.3.1 Broken Chain Fraud

This is a data unavailability attack where the operator creates an entry with a
non-existent prior entry.

Proof. There is no fraud-proof for this attack and would be handled by Vote
to Halt.

9.3.2 Double-Spend Fraud

The operator creates a ledger entry linking to a spent/obsolete ledger entry, i.e.,
two ledger entries have the same parent. As a practical matter, this fraud will be
detected exactly as the Broken Chain Fraud and will result in a chain halt.

Proof. Ledger entries e1 and e2 with same parent p (other than Origin).

e1.parent = e2.parent =⇒ parent = Origin (19)

9.3.3 Counterfeit Fraud

When the ledger entries for a match are created, the operator may switch asset
or accounts in ledger entry chain, inflate the balance of one of the accounts in a
counterfeiting effort. Conversely, values may be fraudulently decreased for victims.

Proof. Most recent entry e and prior entry p for account A. Balances should
add up to quantities transacted; asset and account provenance should hold.

e.balance ≥ 0 (20)

e.balance = p.balance± e.quantity (21)
p.asset = e.asset (22)

p.account = e.account (23)
e.previous = p (24)

e.buyorder.asset = e.sellorder.asset = e.fill.asset (25)

27

9.3.4 Replay/Overfill Fraud

The operator may match the same order multiple times or match it to higher than
specified quantity.

Proof. Most recent execution entry e and prior entry p for order o. The chain
of ledger entries from multiple fills would need to have incorrect fill quantities to
perform this fraud. We can ensure the numbers add up and no orders have been
replayed or overfilled.

p.o.filled + e.fill.quantity = e.o.filled (26)

e.o.filled ≤ e.o.quantity (27)

9.3.5 Price Time Priority Fraud

This is a versatile fraud proof that can detect a variety of exchange frauds. In
particular, it can detect front running, holding orders hostage for skimming and in
general, all frauds where the exchange is required to violate the predefined Central
Limit Order Book (CLOB) behavior.

The proof is based on the fact that front-running and other skimming frauds
are a form of illegal arbitrage that use advance knowledge of order flow. Prof-
itable arbitrage is only possible when the operator can exit at a profitable price
differential. Anything else is economically identical to a normal legal entry.

Market Orders. A victim order sufficiently large to move the price can be
front-run. For example, if the bid/ask is 50@2.00/80@3.00, and if the victim places
a buy market order for quantity of 100, the frontrunner would insert a buy order
to take the existing 80 asks at 3.00 and place a take profit sell order just before
the next order in line to be filled. Frontrunning on market orders are undetectable
since market orders have the highest priority.

Limit Orders. Limit orders cannot be front-run as above since any unfilled
quantity turns into a resting order. When filling deep into the orderbook, a fill-
or-kill flag would ensure that the trader will not pay more than he expects.

To front-run limit orders, the frontrunner would have to hold on to the victim
order and wait for the price to move against the victim and then fill both the
victim order and a take profit order near simultaneously. This is observed as an
order that filled out of turn, i.e., an order with an earlier entry time was filled at
a worse price.

Proof. Recent entry e and prior entry p for the same asset and market side.

e.order.price < p.order.price5 =⇒ e.order.created > p.filltime (28)
5We use the symbol < to denote same or worse price (higher buys and lower sells.)

28

For price-time priority fraud to work correctly, it is necessary to ensure that the
exchange does not accept orders with a clock that is far beyond the skew tolerance
that would weaken the price-time priority fraud.

Proof. Any ledger entry e. The execution of orders should not precede the
orders and the clock skew between the user’s clock and the operator’s clock must
be within the system tolerance MAX_SKEW .

e.buyorder.exchangeT ime ≤ e.fill.exchangeT ime (29)

e.sellorder.exchangeT ime ≤ e.fill.exchangeT ime (30)

| e.order.originatorT ime− e.order.exchangeT ime |< MAX_SKEW (31)

9.3.6 Unit Fraud

Every ledger entry represents an entire state change. The exception is an execution,
which is represented by four Trade entries and up to four Fee entries. The operator
may put fewer or more entries to violate solvency.

Proof. Trade entries for a given execution ex should have exactly four entries
and their quantities should add up to zero. Similarly, two or four Fee entries may
exist per execution. If not, validators proceed to Vote to halt.

ex.length = 4 (32)

ex(A1, Z1).Qty = −ex(A2, Z1).Qty (33)

ex(A2, Z2).Qty = −ex(A1, Z2).Qty (34)

fee.length = 4 ∨ fee.length = 2 (35)

fee(A1, Z1).Qty = −fee(A2, Z1).Qty (36)

fee(A2, Z2).Qty = −fee(A1, Z2).Qty (37)

9.4 Validator Considerations

9.4.1 Storage

Most fraud proofs require only the most recent entry, which contains sufficient
information to prove its validity. These can be statelessly validated.

Solvency proofs require keeping track of the last balance of every asset for
every user. When a new balance entry is observed, the new and old entries can
be used to verify validity of the transaction. An invalid change results in a fraud
proof submission and a valid entry results in the new entry replacing the old. The

29

storage requirement would be: number of minimum-balance accounts × number of
listed assets.

Overfill and price-time priority proofs requires retaining references to the last
Trade and Fee ledger entries of every Asset regardless of user. The maximum
space required is: 2 × number of listed assets.

9.4.2 Adverserial

Spam attacks to overwhelm validators would require an attacker to create an exces-
sive number of accounts since listing assets is controlled by the exchange. Requiring
a minimum balance to trade, minimum withdrawal sizes and a reasonable tick size
should ensure that validators are not spammed by millions of dust accounts.

Future Work
Zk-snarks or zk-starks may be a succinct alternative to a large set of separate
proofs. A complete chain of proof-of-correctness exist between main-chain com-
mitments. If these can be coalesced into a single compact proof that can be
committed to the main-chain and verified by the plasma contract, the data un-
availability problem can be eliminated, enabling us to eliminate unconfirmed blocks
and voting to halt. This is an active research subject at the time of this writing.

The same plasma chain can support multiple operators who need to coordinate
the plasma operations. These exchanges are incentivized by revenue sharing to
share their unfilled orders with peer exchanges. Consequently, deposits and trades
on the plasma chain will appear on all exchanges, mitigating the effects of downtime
of a single exchange.

Acknowledgment
Gluon plasma is a product of teamwork and the protocol would not be possible
without the extensive efforts of the full leverj.io team. In particular, N. Gupta for
fixing many security issues and making the protocol robust with great attention to
detail, B. Sadeh for simplifying deposits and ensuring the protocol remains simple,
S. Tiwari for help with proofs and C. Engel for critical input from product fit and
market perspective.

30

References
[1] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.

https://bitcoin.org/bitcoin.pdf, 2009.

[2] Ethereum. A Next-Generation Smart Contract and Decentralized Applica-
tion Platform.
https://github.com/ethereum/wiki/wiki/White-Paper, 2013.

[3] G. Wood. Ethereum: A Secure Decentralized Generalized Transaction
Ledger. https://gavwood.com/paper.pdf, 2014.

[4] J. Poon, V. Buterin. Plasma: Scalable Autonomous Smart Contracts
http://plasma.io/plasma.pdf, 2017.

[5] N. Stifter, A Judmayer, P Schindler, A Zamyatin, E Weippl. Agreement with
Satoshi – On the Formalization of Nakamoto Consensus
https://eprint.iacr.org/2018/400.pdf, 2018.

[6] C. Dwork, M. Naor. Pricing via Processing or Combatting Junk Mail.
http://www.hashcash.org/papers/pvp.pdf, 1993.

[7] parity.io https://wiki.parity.io/Proof-of-Authority-Chains.

[8] G. Maxwell. CoinJoin. https://bitcointalk.org/?topic=279249, 2013.

[9] Bitcoin.it https://en.bitcoin.it/wiki/Protocol_documentation.

[10] Bitcoin.it https://en.bitcoin.it/wiki/Cold_storage.

[11] A. Dmitrienko, C. Liebchen, C. Rossow, A. Sadeghi. Security Analysis of
Mobile Two-Factor Authentication Schemes.
http://www.icri-sc.org/fileadmin/user_upload/Group_TRUST/
PubsPDF/Dmitrienko-127-camera-ready.pdf, 2014.

[12] B. Rao, N. Gupta. Leverj Decentralized Custody.
https://leverj.io/LeverjProtocol.pdf, 2017.

[13] W. Warren, A. Bandeali.
https://0xproject.com/pdfs/0x_white_paper.pdf, 2017.

[14] investopedia.com https://www.investopedia.com/terms/o/oco.asp.

[15] N. Gupta. Zero Knowledge API Keys.
https://blog.leverj.io/zero-knowledge-api-keys-43280cc93647,
2018.

31

https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://gavwood.com/paper.pdf
http://plasma.io/plasma.pdf
https://eprint.iacr.org/2018/400.pdf
http://www.hashcash.org/papers/pvp.pdf
https://wiki.parity.io/Proof-of-Authority-Chains
https://bitcointalk.org/?topic=279249
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Cold_storage
http://www.icri-sc.org/fileadmin/user_upload/Group_TRUST/PubsPDF/Dmitrienko-127-camera-ready.pdf
http://www.icri-sc.org/fileadmin/user_upload/Group_TRUST/PubsPDF/Dmitrienko-127-camera-ready.pdf
https://leverj.io/LeverjProtocol.pdf
https://0xproject.com/pdfs/0x_white_paper.pdf
https://www.investopedia.com/terms/o/oco.asp
https://blog.leverj.io/zero-knowledge-api-keys-43280cc93647

A Safety of Trustless Constraints

S

B1

R

B2

10 10

10

(a) Banking

S

C

R

?
pay

notify

send

(b) Credit Cards

S

P

R

?

10 8

2

(c) Postal

S

H

R

10? ?

(d) Hawala

S R
10

(e) Crypto

Figure 7: Custodial characteristics of payment networks.

Banking. Payments are settled between member banks. The recipient waits
for the bank to processes the transaction, deduct fees and release a portion for
withdrawal. No Segregation implies risk of censorship and seizure.

Credit Cards. Anyone with the card information can initiate a payment.
Elaborate fraud detection schemes are needed to compensate for the lack of Agency
in the system design.

Postal Service. Some packages sent through the mail may be irreplacably
lost. Even when using registered mail, there is no way to guarantee that all items
sent will be received. The system lacks Solvency and is not usable for items of
high value.

Hawala. The rest of the Hawala network cannot verify that a payment has
indeed been correctly made. No Integrity enforcement inhibits the Hawala network
growth beyond trusted family and kin.

Crypto. Crypto networks require a signature from the sender’s private key.
The payment is sent directly into the recipients public key. Network participants

32

can observe the signature and validate the exact payment amount and update their
ledgers. This network enforces all four constraints.

Theorem 1. Provably safe payments between participants in a payment network
is only possible when all intermediaries are perfectly safe.

Proof. Let the digraph G = (V,E) represent a payment network where V is the
set of members and E is the set of interconnections. Let Πs represent the set of
all paths beginning with vs. Let Πt represent the set of all paths ending at vt.

The set of all payment routes between vs and vt that vs can use to send a
payment to vt is

Πt
s = Πs ∩ Πt (38)

Let Pi be the probability of loss of safety during payment forwarding at each
node vi of any path Πi in Πt

s. The cumulative probability P of loss of safety at
least a single node along Πi is

P =
n∑
0

Pi (39)

P = 0 ⇐⇒ n = 0 ∨ ∀i, Pi = 0 (40)

Loss of safety is zero if and only if there are perfect or no intermediaries.

Remark. The outgoing edge from vs represents Agency. The incoming path to
vt represents Segregation. Having only perfect or zero intermediaries represents
Solvency. The ability of other participants to verify the existence of the edge (vs, vt)
represents Integrity.

Corollary 1. A series of perfect intermediaries between two network participants
is equivalent to having no intermediaries.

Proof. A perfect intermediary is transitive.

vs → vi → vt =⇒ vs → vt (41)

Perfect intermedairy nodes can be disregarded from analysis and a series of perfect
intermediaries from vertex vs to vt is equivalent to a directed edge from vs to vt.

Remark. A path consisting of a single directed edge or equivalent from the sender
to receiver represents the four trustless constraints.

33

B Proof of Custody

s0start

s1

s3

s2
De
po
sitRe

cla
im

On Ledger

Halt Chain
Trades

Su
bm
it
Bl
oc
kW

ithdraw/Exit

Figure 8: State Diagram of user funds custody

In Fig. 8, State s0 represents funds on the main chain under direct control of
the user’s private key. States s1 and s3 represent funds on the plasma contract
that the user can move back to s0 without the need for any other parties. State s2
represents uncommitted balance changes in the plasma chain. We prove continuous
user custody by showing that the user can always move funds to s0.

The user initiates a deposit into the plasma chain using the Deposit step of the
protocol, moving funds from s0 to s1. State s1 represents funds deposited by the
user into the Plasma smart contract waiting to be credited into the plasma chain
by the operator. Funds on state s1 will move to state s2 after k blocks. If not, the
user can move funds back to s0 using the Reclaim Deposit step.

State s3 represents committed balances on a confirmed plasma block. Con-
firmed changes can be moved to s0 using the Withdrawal or Exit Asset Balance
protocol steps.

State s2 represents funds on the actual plasma chain in unconfirmed blocks or
the Mempool. During normal operation of the chain, balance changes are periodi-
cally committed to the plasma contract and the funds move to state s3 from where
they can be moved as above. When the operator is compromised, the chain can
be halted and state s2 is effectively deleted. User funds remain in either s1 or s3
and can be directly moved to s0.

34

C Proof of Safety
The plasma system is safe only if every state change is safe. Enforcing the trustless
constraints at every step of the protocol, every ledger entry and all ledger entry
ordering creates a secure system. The tables below show all possible state changes
and their enforcing fraud-proof or protocol step.

Table 5: Plasma Protocol. Every protocol step enforces all constraints.

Step Segregation Agency Solvency Integrity
Deposit 9.1.2 9.1.2 9.1.2 9.1.2

Reclaim Deposit 8.2 8.2 8.2 8.2
Withdraw 8.3 9.1.4 9.3.3 9.3.3

Exit 8.4 9.1.6 9.1.5 9.3.3
Submit Block 9.1.1, 9.1.3 9.1.1 9.1.1 9.1.1

Table 6: Plasma Ledger Entries. Every ledger entry enforces all constraints

Field Deposit Withdraw Exit Trade Fee
Id 9.3.1 9.3.1 9.3.1 9.3.1 9.3.1

Prior 9.3.2 9.3.2 9.3.2 9.3.2 9.3.2
Account 9.1.2, 9.3.3 9.3.3 9.3.3 9.3.3 9.3.3
Asset 9.1.2, 9.3.3 9.3.3 9.3.3 9.3.3 9.2.2

Balance 9.3.3 9.3.3 9.3.3 9.3.3 9.3.3
Price − − − 9.2.3 9.2.2
Qty 9.1.2, 9.3.3 9.3.3 9.3.3 9.3.3, 9.3.4 9.3.3, 9.3.4
Time − − − 9.3.5 9.3.5

Witness 9.1.2 9.1.4 9.1.6 9.2.1 9.2.1
Segregation 9.1.2 8.3 8.4 9.2.1 9.2.2

Table 7: Order of Ledger Entries. Combinatorial attacks prevented.

Attack Deposit Withdraw Exit Trade Fee
Unitary − − − 9.3.6 9.3.6
Replay 9.1.1 8.3 9.1.5 9.3.4, 9.3.5 9.3.4, 9.3.5
Suppress 9.1.1 8.4 9.1.5 No effect6 No effect
Reorder 9.3.3 9.3.3 9.1.5 9.3.5 9.3.5

6Suppressed Trade entries are equivalent to cancelled orders and suppressed Fee entries are
equivalent to free trades.

35

36

	Introduction
	Previous Work
	Trustless Finance
	A Graph-Theoretic Model of a Trustless UTXO System

	Exchange Security Models
	Centralized Exchanges
	On-chain Exchanges (DEX)
	Hybrid Exchanges

	Plasma and Plasma Exchanges
	Plasma Classic Outline
	Plasma Exchange
	UTXO Based Plasma Issues for Exchanges

	Gluon Plasma
	Gluon Plasma Outline
	The Gluon Plasma Ledger
	Ledger Entries
	Ledger Entry types
	State Transitions
	Gluon Blocks

	Characteristics of Gluon Plasma
	Account Based
	Small Footprint
	Instant Finality
	Fast Withdrawal
	Compact Fraud-Proofs for Every Transition
	Non-onerous Safety
	Congestion Tolerant
	Incentive Balanced
	Chain Halt on Data Unavailability

	The Gluon Plasma Protocol
	Deposit
	Reclaim Deposit
	Withdrawal
	Exit Asset Balance
	Gluon Block Submission
	Vote to Halt
	Halt Abandoned Chain
	Fraud Proofs
	General Protocol Characteristics
	Spam Attacks
	Network Congestion/Server Temporarily Offline
	Contract Upgrade
	Halted State

	Gluon Plasma Fraud Proofs
	Gluon Protocol Frauds
	Block Commitment Frauds.
	Invalid Deposit Fraud
	Deposit Reversal Fraud
	Fake Withdraw Entry
	Exit Insolvency Fraud
	Fake Exit Fraud

	Ledger Entry Frauds
	Fake Signature Fraud
	FEE Fraud
	Price Fraud

	Ledger Entry Ordering Frauds
	Broken Chain Fraud
	Double-Spend Fraud
	Counterfeit Fraud
	Replay/Overfill Fraud
	Price Time Priority Fraud
	Unit Fraud

	Validator Considerations
	Storage
	Adverserial

	Safety of Trustless Constraints
	Proof of Custody
	Proof of Safety

